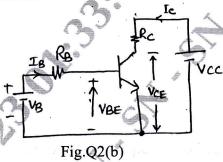
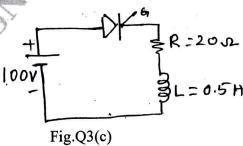
Time: 3 hrs.

Max. Marks:100


Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 **Power Electronics**

PART – A

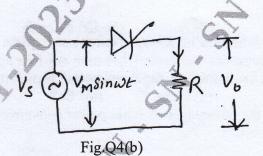

- 1 a. Give the definition of power electronics. Explain the relationship of power electronics to power, electronics and control. Mention any four applications of PE. (06 Marks)
 - o. With the circuit diagram, input and output waveforms, explain the control characteristics of:

 (i) SCR (ii) GTO (iii) BJT (iv) MOSFET (08 Marks)
 - c. What are the advantages of static power converters? Mention the peripheral effects of such static converters. (06 Marks)
- 2 a. Draw the transient model of BJT and explain the switching characteristics of power transistor. (10 Marks)
 - b. The bipolar transistor in Fig.Q2(b) is specified to have β in the range 8 to 40. The load resistance is $R_C = 11~\Omega$. The dc supply voltage is $V_{CC} = 200~V$ and the input voltage to base circuit is $V_B = 10~V$ if $V_{CE(sat)} = 1.0~V$ and $V_{BE(sat)} = 1.5~V$. Find:
 - (i) The value of R_B that results in saturation with an over drive factor of 5.
 - (ii) The forced β_f
 - (iii) The power loss P_T in the transistor

2(b) (06 Marks)

- c. Compare the BJT and MOSFET.
- 3 a. Sketch the V-I characteristics of an SCR and explain two transistor model of a thyristor and derive anode current expression. (10 Marks)
 - b. With the help of neat circuit diagram and waveforms, explain RC firing circuit used with half controlled rectifier. (06 Marks)
 - c. The latching current shown in Fig.Q3(c) is 50 mA. The duration of gate pulse is 50 μsec. Will the thyristor get fired?

(04 Marks)


(04 Marks)

- 4 a. With a neat circuit diagram and waveforms, explain the working of a single phase full converter feeding highly inductive load. Derive the expression for the average output voltage and rms output voltage.

 (10 Marks)
 - b. If the converter of Fig.Q4(b) is as shown, has purely resistive load of R and the delay angle

is $\alpha = \frac{\pi}{2}$, determine:

- (i) The rectification efficiency
- (ii) The form factor
- (iii) The ripple factor

(10 Marks)

PART - B

- 5 a. What is forced commutation? With the help of neat diagram and relevant equations, explain the operations of self commutation circuit. (10 Marks)
 - b. Explain the complementary commutation with the help of neat circuit and waveforms. Also determine the circuit turn-off time, $t_{\rm off}$, if the load resistance of $R_1 = R_2 = R = 5\Omega$, capacitance $C = 10~\mu f$ and supply voltage $V_S = 100~V$. (10 Marks)
- 6 a. With the help of circuit diagram, explain the operation of single phase full wave controller using ON-OFF control. Derive the expression for rms value of load voltage. (10 Marks)
 - b. Explain the single phase bidirectional AC voltage controller with resistive load with waveform. Also discuss single phase full wave controller with one thyristor. (10 Marks)
- 7 a. With neat circuit diagram, explain the principal of operation of step up chopper. (08 Marks)
 - b. Give the classification of Choppers. Explain briefly with relevant circuit diagrams. (12 Marks)
- 8 a. What do you mean by inverters? Explain the principle of operation of single phase half inverter. (08 Marks)
 - b. Explain the performance parameters of an inverter.

(06 Marks)

c. With neat circuit, explain the variable DC link inverter.

(06 Marks)